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By Richard Steck 

The two-machine problem may be stated as follows. Given two machines A 
and B with unknown, fixed probabilities of performing successfully, find a strategy 
of sequential sampling of the machines so as to converge on the machine with the 
higher success rate while minimizing the expected number of failures in the learn- 
ing process. Based on information gained in earlier trials, the strategy supplied by 
dynamic programming gives the best choice of machines at each trial. The strategy 
developed is thus particularly valuable when the cost of failure is great. The two 
machine problem has gained attention in connection with the use of untried drugs 
in critical medical cases. In the case that two drugs labelled A and B are thought 
to be cures for a usually fatal disease, one might ask how should the drugs be 
sampled so as to converge on the better drug with a minimal sacrifice of patients in 
the meantime. In this paper the results of a particular application of a dynamic 
programming strategy to the two-machine problem are shown. A set of computed 
decision tables and a description of their use is presented. 

Let r and r' represent the respective number of trials and m and m' the respec- 
tive number of successes of machines A and B. With the a priori information that 
machine A has produced n successes out of s trials and machine B has produced 
n successes out of s' trials we wish to maximize the expected number of future suc- 
cesses using an optimal policy. In the absence of information concerning the success 
rates of the machines we may take n = n' = 1, s = = 2. Defining fr,r'(m, m') 
as the expectation of the random variable 

00 

i=r+r'+1 

where a is a discount factor introduced to make w finite and to place emphasis on 
early trials, Gluss [1] arrives at the relation 

FA: m + n[1 + afr+?,r'(m + 1, mi)] 

(2) fr,r'(M, in') = Max + ri + s 
f+,'i,i' 

B: m + n 
[I + afr,r'+l(mn m + 1)] 

r' + 8' ~ ~ m+ 

L +( n afr,r'+?(m, mi)] 

Assuming that after a total of r + r' = N trials we expect to make a decision as 
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to which is the better machine then we impose the constraints 

A: (m' + n ) a(-)] 
(3) fr,r( m,i'= Max rA +~~i2 1-a 

Using (3) to compute the values of fr,r'(m, m') for r + r' = N the f's for 
r + r' < N were computed sequentially using (2). In the example below N was 
chosen in accordance with the core capacity of the UNIVAC 1105, N = 25. The 
discount factor, a, was selected as a = 0.95. 

A considerable reduction in computation and storage was affected by taking 
advantage of the symmetry between r and r'. When r > r' we can consider the iden- 
tities of the two machines to be interchanged, i.e., we consult the table entry for 
1', r, and reverse the indicated decision. 

Presented below are computed strategy tables for N ranging froml to 25. In 
this example the initial choice of iiachines is arbitrary; after the first selection and 
trial we refer to the table for N = 1. Depending upon the success or failure of this 
trial the appropriate row and column are consulted. At the intersection a breakpoint 
M' is found. The selection rule for the next trial is as follows. If m' > Ml' select B 
otherwise select machine A. Exceptions to this rule occur as footnotes to the in- 
dividual tables. The appearance of the letters A or B imply that either A or B is to 
be selected respectively. 

As an example let us assume that we have tried machine A seven times and 
machine B thirteen times. Let us further assume that machines A and B have been 
successful in four and nine trials respectively. We consult the table for r + ' = 
N = 20. In the column r = 7 and the row m = 4 the breakpoint M' = 9 is found. 
Since m' = M' machine B is selected for the next trial. Had it been the case that 
m = 3, nmachine B would have been selected excepting the cases where m' = 4, 5, 6 
as indicated in the footnote. 

N = I 0av l O 1 N =4 n 1 2 

0 1 B 0 3 1 B 
1 | B 1 3 1 

2 2 

N=5 in r 0 1 2 3 

0 3 1 B B 
O 1 B 1 3 2 B 
1 1 2 3 B 

3 B 

N =6 n O 1 2 3 
N =3 r O 1 2 

0 4 2 1 B 
0 2 B B 1 4 2 1 
1 2 B 2 4 2 
2 B 3 3 
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N = 7 N = 10 

in 0 1 2 3 4 0 1 2 3 4 5 

0 5 2 1 B B 0 7 4 2 1 1 B 
1 5 3 1 B 1 8 5 3 2 1 
2 5 3 B 2 7 5 3 2 
3 4 B 3 7 4 3 
4 B 4 6 4 

5 5 

N= 8 N= 11 

in O 1 2 3 4 m o I 2 3 4 5 6 

0 6 3 1 1 B 0 8 5 3 2 1 B B 
1 6 4 2 1 1 9 6 4 2 1 B 
2 5 3 2 2 8 6 4 2 B 
3 5 3 3 8 5 4 B 
4 4 4 7 5 B 

5 6 B 
6 B 

N=9 N= 12 

-rn<O ] 2 3 4 5 m O 1 23 456 

0 7 4 2 B BB 0 9 5 3 2 1 B B 
1 7 4 2 1 B 1 10 6 4 3 2 1 
2 6 4 2 B 2 9 6 4 3 2 
3 6 4 B 3 9 6 4 3 
4 5 B 4 8 6 4 
5 B 5 7 5 

6 6 

N= 13 r 0 1 2 3 4 5 6 7 

0 10 6 4 2 1 1 B B 
1 11 7 5 3 2 1 B 
2 10 7 5 4 2 B 
3 10 7 5 3 B 
4 9 7 5 B 
5 8 6 B 
6 7 B 
7 B 

N= 14 r 0 1 2 3 4 5 6 7 

0 11 7 5 3 2 1 B B 
1 11 8 6 4 2 2 1 
2 11 8 6 4 3 2 
3 11 8 6 4 3 
4 10 8 5 4 
5 9 7 5 
6 8 6 
7 7 
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N =15 m <0 1 2 3 4 5 6 7 8 

0 12 8 5 4 3 1 1 B B 
1 12 9 6 4 3 2 1 B 
2 12 9 7 5 3 2 B 
3 12 9 7 5 3 B 
4 11 9 6 5 B 
5 10 8 6 B 
6 9 7 B 
7 8 B 
8 B 

N= 16 m 0 1 2 3 4 5 6 7 8 

0 12 8 5 3 2 2 1 B B 
1 13 10 7 5 3 3 2 1 
2 13 10 8 5 4 3 2 
3 12 9 7 5 4 3 
4 12 9 7 5 4 
5 11 9 7 5 
6 10 8 6 
7 9 7 
8 8 

N= 17 m \ r 1 2 3 4 5 6 7 8 9 

0 13 9 6 4 2 2 1 B B B 
1 14 10 8 6 4 3 2 1 B 
2 14 11 8 6 5 3 2 B 
3 13 10 8 6 5 3 B 
4 13 11 8 6 4 B 
5 12 10 7 6 B 
6 11 9 7 B 
7 10 8 B 
8 9 B 
9 B 

N= 18 1 2 3 4 5 6 7 8 9 

0 14 9 6 4 3 2 2 1 1 B 
1 15 11 8 6 4 4 2 2 1 
2 B' 11 9 7 5 4 2 2 
3 14 11 9 7 5 4 3 

144 11 9 7 5 4 
5 13 11 8 6 5 
6 12 10 8 6 
7 11 9 7 
8 10 8 
9 9 

'A if 6 m' 14. 
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N= 19 m1 2 3 5 6 7 8 9 10 

0 15 10 7 5 3 3 2 B 1 1 B 
1 15 12 9 7 5 3 B2 2 1 B 
2 B' 12 9 7 6 B3 3 3 B 
3 15 12 10 8 B4 5 3 B 
4 15 12 10 8 6 5 B 
5 14 12 9 7 6 B 
6 13 11 9 7 B 
7 12 10 8 B 
8 11 9 B 
9 10 B 

10 B 
'A if 7 ? m' < 15. 
2A if m' = 1, 2. 
3A if m'=3,4. 
4 A if m' = 3, 4, 5. 

N= 20 0 1 2 3 4 5 6 7 8 9 10 

0 16 11 8 5 4 3 2 B2 3 1 B 
1 17 12 9 7 5 5 33 3 2 1 
2 B' 13 10 8 7 B4 4 3 2 
3 16 13 10 9 B5 6 4 3 
4 15 13 10 9 7 5 4 
5 15 12 10 8 7 5 
6 14 12 10 8 6 
7 13 11 9 7 
8 12 10 8 
9 11 9 

10 10 
I A if m' = 8 _ m< 14,16. 
2Aifm' = 1. 
3A if m' = 1, 2. 
4 A if m' = 4. 
5 A if m' = 4, 5, 6. 

N=21 m rn\ 0 1 2 3 4 5 6 7 8 9 10 1I 

0 171 11 82 6 4 3 2 2 1 66 B B 
1 17 13 10 8 6 4 4 3 67 1 B 
2 B3 14 11 9 7 B4 5 6 2 B 
3 17 14 11 9 B5 6 5 4 B 
4 16 14 11 9 8 6 5 B 
5 16 13 11 9 7 6 B 
6 15 13 11 9 7 B 
7 14 12 10 8 B 
8 13 11 9 B 
9 12 10 B 

10 11 B 
11 B 

B if m'= 14. 5A if m'=4, 5, 6. 
2B if m'= 0, 1. 6B if m' = 3. 
3A if 10? m' ? 16. 7B if m' = 3, 4. 
4A if m' = 4. 
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N= 22 0 1 2 3 4 5 6 7 8 9 10 11 

0 17 12 81 6 5 34 2 2 1 1 B7 B 
1 18 14 11 8 64 6 4 3 3 B8 1 
2 B2 14 12 94 7 B5 5 4 39 2 
3 18 15 124 10 B6 7 6 5 3 
4 173 16 12 10 8 7 6 4 
5 16 14 12 10 8 7 5 
6 16 13 11 10 8 6 
7 15 13 11 9 7 
8 14 12 10 8 
9 13 11 9 

10 12 10 
11 11 

lB if' = 0,1, 2. 
2 A if 12 < m' < 17. 
3 B if m' = 15. 
4A ifm'= 14,15. 
'A ifm' = 5. 
t A if m' = 5, 6, 7. 

A if m' = 1,2,4, 5. 
8 A if m' = 0,1, 4, 5. 
9 A if m' = 4, 5. 

N = 23 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 17 12 9 7 4 3 36 2 2 1 B B B 
1 18 14 11 9 7 87 4 3 3 2 1 B 
2 01 15 12 10 83 7 5 4 4 2 B 
3 18 15 13 114 9 8 6 5 4 B 
4 18 15 125 11 9 7 6 5 B 
5 172 16 12 10 9 7 6 B 
6 16 14 12 10 9 7 B 
7 16 13 12 10 8 B 
8 15 13 11 9 B 
9 14 12 10 B 

10 13 11 B 
11 12 B 
12 B 

A if m' = 15, 16, 17. 
2 B if m' = 15. 
' A if m' = 14, 15. 
4 A if m' = 14, 15. 
5 A if m' = 14, 15. 
6 A if m' = 6, 7, 14, 15. 
7B if m' = 5, A if m' =14, 15. 
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N= 24 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 16 11 8 7 5 4 3 3 2 2 2 B B 
1 18 14 11 9 7 6 5 4 3 3 1 2 
2 19 15 12 10 8 7 6 5 4 42 3 
3 19 15 13 11 9 8 6 61 5 4 
4 18 15 13 1 19 8 7 6 5 
5 18 15 13 11 9 8 7 6 
6 17 15 12 11 9 8 7 
7 17 14 12 10 9 8 
8 16 14 12 10 9 
9 15 13 11 10 

10 14 12 11 
11 13 12 
12 A 

1B if m' = 4. 
2 B if m' = 2. 

N= 25 i O 1 2 3 4 5 6 7 99 10 11 1213 

0 13 8 6 4 3 3 2 2 1 1 1 1 1 B 
1 17 12 9 7 6 5 4 3 3 2 2 2 1 
2 18 14 11 9 7 6 5 4 4 3 3 2 
3 19 15 12 10 8 7 6 5 4 4 3 
4 19 15 13 11 9 8 7 6 5 4 

15815 13 11 9 8 7 6 5 
6 18 15 13 11 9 8 7 6 
7 17 15 13 11 9 8 7 
8 17 14 12 11 9 8 
9 16 14 12 10 9 

10 15 13 11 10 
11 14 12 11 
12 13 12 
13 A 
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